Emulation of the origin and persistence of overflow in focal task-specific dystonia

Won Joon Sohn, C. M. Niu, Terence D. Sanger

1Biomedical Engineering, 2Biokinesiology and Physical Therapy, 3Neurology University of Southern California, Los Angeles

Question
How does overflow in focal task-specific dystonia develop and why does it persist?

What did we find?
Repetitive & correlated use of two distinct sensory regions is sufficient to cause development of motor overflow

Introduction

- **Focal task-specific dystonia** is characterized by excessive muscle contraction producing abnormal postures during selective motor activity that often involve highly skilled, repetitive movements.

Commonly known for:
- Writer’s cramp
- Musician’s cramp
- Occupational cramps

Characteristic features:
- Overflow
- Prolonged abnormal postures
- Permanent motor deficit
- Loss of fine motor control

Physiological evidence:
- De-differentiation in cortical representation (Bly et al. 1997)
- Abnormal tactile form perception and spatial and sensory processing (Bara-Jimenez et al. 2000)
- Loss of muscle selectivity in fingers (Young et al. 2011[1])

Overflow idea

- Growth of cross-talk synapses is sufficient to cause motor overflow to an adjacent finger.

Cortical map

Sensory neurons

Crosstalk synapses

Blurred boundaries in sensory map (Nudo 2003)

What is the plasticity mechanism?

- Spike-Timing-Dependent Plasticity

Synaptic connections

FP (Field Programmable Gate Array)
- Fast
- Rapid prototyping
- Scalable
- For high-speed emulations

Development of overflow in dystonia

Questions: What repetitive & correlated movement lead to the growth of cross-talk?
Will the disease perpetuate after the correlated movement has ended?

Phase 1:
- Two different stimuli to two input sensory neurons
- Pre-post synaptic activities are uncorrelated.
- Cross-talk is suppressed.

Phase 2:
- Coupled stimuli to two input neurons
- Pre-post synaptic activities are correlated.
- Growth of cross-talk (=De-differentiation in cortical map)
- Overflow develops

Phase 3:
- Uncorrelated inputs
- Inputs are the same as phase 1
- Pre-post synaptic activities still correlated.
- Overflow persists.

How does the result relate to dystonia?

- This is a model of development of overflow in focal task-specific dystonia.
- Blurred boundaries in cortical representation is found in dystonia and we showed how it could develop and eventually lead to motor overflow.

Implication of the result

- Once dystonia occurs, it sticks. (Hysteresis phenomenon).
- Temporal sensory abnormalities could lead to motor permanent abnormalities.
- De-differentiation in sensory cortex, increased receptive field size could increase sensorimotor loop gain. (Sanger & Merzenich 2000[2])
- Treatment should target suppressing the cross-talk.
- Amblyopia can also be simulated with the same mechanism shown here.

Limitation

- This is a reduced representation of neural structures

Conclusion

- Repetitive and correlated movement is sufficient to produce the development of overflow in focal task-specific dystonia
- Spiking neurons with mere STDP rule are sufficient to produce this
- High speed emulation with physiologically realistic learning rate over years.

This project is funded by NIH R01NS069214-02